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The effect of rapid mean compression on compressible turbulence at a range of 
turbulent Mach numbers is investigated. Rapid distortion theory (RDT) and direct 
numerical simulation results for the case of axial (one-dimensional) compression are 
used to illustrate the existence of two distinct rapid compression regimes. These 
regimes - the nearly solenoidal and the ‘pressure-released’ - are defined by a single 
parameter involving the timescales of the mean distortion, the turbulence, and the 
speed of sound. A general RDT formulation is developed and is proposed as a 
means of improving turbulence models for compressible flows. In contrast to the 
well-documented observation that ‘compressibility’ (measured, for example, by the 
turbulent Mach number) is often associated with a decrease in the growth rate of 
turbulent kinetic energy, we find that under rapid distortion compressibility can 
produce an amplijication of the kinetic energy growth rate. We also find that as the 
compressibility increases, the magnitude of the pressure-dilation correlation increases, 
in absolute terms, but its relative importance decreases compared to the magnitude 
of the kinetic energy production. 

1. Introduction 
This paper focuses upon the behaviour of homogeneous compressible turbulence 

under the influence of rapid axial (one-dimensional) mean compression. The motiva- 
tion for this study is a need to cast light upon the physics of compressible turbulent 
flows and to improve compressible turbulence models. Our approach is to use both 
direct numerical simulations (DNS) and rapid distortion theory (RDT). The RDT 
developed in this paper is for general (those that preserve homogeneity) mean defor- 
mations; the resulting insight is then used to suggest improvements to compressible 
turbulence models that are applied to rapidly compressed flows. 

Earlier RDT studies of homogeneous compressible turbulence have been limited 
to either isotropic compressions (G.A. Blaisdell 1992, private communication) or the 
vanishing turbulent Mach number limit (Durbin & Zeman 1992, hereafter referred 
to as DZ) ; the present investigation, therefore, attempts a more general treatment in 
that non-isotropic compressions and finite Mach numbers are considered. Some of 
our main conclusions confirm and extend those found in the recent study by Jacquin, 
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Cambon & Blin (1993), who use homogeneow RDT to investigate some mechanisms 
of shock-turbulence interactions. 

An overview of our findings follows. The RDT analysis predicts that the crucial 
parameter for turbulence subjected to rapid compression is the ratio of the mean 
deformation rate, D, to the inverse sonic timescale { / a ,  where / is a turbulent 
lengthscale and a is the sound speed. This parameter, Dd/a ,  hereinafter denoted as 
Am (after DZ - who chose the notation since the parameter can be interpreted as 
the change in mean flow Mach number across an ‘eddy’ of size 8) is equivalent to 
the product of the inverse of the turbulent timescale, the deformation rate, and the 
turbulent Mach number, M ,  ; it defines for the dilatational part of the velocity field two 
distinct limits: the ‘nearly solenoidal’ regime given by (Am)2 4 1 (that studied by DZ) 
and the so-called ‘pressure-released’ regime with Am %- 1. The term ‘pressure-released’ 
(after Jacquin et al.) is chosen because when Am is large, the sonic and turbulent 
timescales are both much larger than D-‘ and, therefore, correlations involving the 
fluctuating pressure and velocity fields are negligible during a rapid distortion. The 
behaviour of the solenoidal velocity field, according to the RDT analysis, is unaffected 
by the dilatational field when the mean flow is irrotational, and is thus independent 
of Am for axial compressions. Its history is, therefore, identical to that predicted for 
compression of purely solenoidal turbulence. In the following, we confirm these RDT 
predictions by comparison with DNS results. 

The DNS results also show that for moderate values of Am, all the double-velocity 
correlations involving the dilatational part of the turbulent velocity field remain weak 
with respect to the pure-solenoidal correlations and are in this sense similar to the 
pure solenoidal case, even for moderate compressibility (i.e. Am), Only the A m +  1 
case is characterized by a strong amplification of the dilatational correlations. 

The moderate-Am results are at first glance in conflict with recent studies of axially 
compressed turbulence (e.g. DZ; Zeman & Coleman 1993) which find unexpectedly 
large pressure-dilatation correlations in the nearly solenoidal flow. This led us to 
investigate the behaviour of the pressure field, which has two roles for a rapid 
compression. On one hand, it modifies the production term in the turbulent kinetic 
energy equation by changing the Reynolds stress anisotropy through nij, the classic 
pressure-strain rate correlation tensor (via n,, for an axial compression in the x1 
direction). On the other hand, the pressure is directly involved in the kinetic energy 
equation through the pressure-dilatation term, h’ = U i i / 2  = pu,i/p. The magnitude 
of nl1 is found to be larger than that of I7 in all cases considered in this paper for a 
wide range of Mach numbers and large (but finite) compression speeds. 

Both the pressure variance and pressure-dilatation correlation from the DNS 
are found to increase with turbulent Mach number (and, therefore, with Am at a 
fixed mean distortion-to-turbulent timescale ratio) with respect to their initial values. 
However, when n is compared to the production term in the turbulent kinetic energy 
transport equation, it is much smaller and has, in fact, less relative importance with 
increasing Mt.  This reduced relative importance of the pressure field with increasing 
compressibility is a key result of this paper and is the basis of much of what follows. 
Between the Am + 0 and Am + extremes (where for both the ratio of the pressure- 
dilatation correlation to the turbulent kinetic energy production is identically zero), 
IZ must reach a maximum; from the DNS results, it appears that this maximum 
occurs near the Am + 0 limit at a small but finite value. 

In the next section, the RDT analysis is developed for compressible homogeneous 
turbulence; in 53, the theory is applied to the case of axial compression, and separate 
analytic expressions for the relevant dilatational and solenoidal correlations for both 
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the Am + 1 and Am s- 1 extremes are presented and compared to DNS results. The 
findings suggest that it would be appropriate for turbulence models to ‘interpolate’ 
between the two extremes in order to accurately capture the Mt dependence during a 
rapid axial compression. We propose two methods for doing so in §4, which deals with 
the role of, and closures for, the pressure-strain rate correlation. Section 5 considers 
the implications of this study for isotropically compressed and sheared flows, and $6 
contains a recap of the main results and our conclusions. 

2. A rapid distortion analysis for compressible homogeneous 
turbulence 

2.1. General considerations 
Blaisdell, Mansour & Reynolds (1991) observed that the ‘intrinsic compressibility’ (the 
non-zero divergence) of the turbulent field often tends to reduce the amplification 
of turbulent kinetic energy produced by a mean velocity gradient, such as a bulk 
compression or mean shear, with respect to the pure solenoidal case. This effect 
depends on at least three different timescales and on the initial turbulent field. These 
are the mean distortion timescale, 

zg-1 = (Ui,jUi,j)f (1) 

zt-l = q / /  (2) 

(where Ui,j is the mean velocity gradient), the ‘turbulent decay’ or ‘turn-over’ time, 

(where q2/2 is the turbulent kinetic energy and k‘ is a lengthscale of the energy- 
containing eddies), and the timescale linked to the sonic speed, 

z, ’ = a / / .  

The compression speed, r = z,/zD, is the only relevant parameter for modelling ho- 
mogeneous incompressible turbulence (at least for large Reynolds number). However, 
when intrinsic compressibility is considered, the ratio of the two latter timescales, 
which amounts to a turbulent Mach number M, = z,/zt,  must also be accounted 
for. The magnitude of the reduction of the kinetic energy amplification mentioned 
above is, therefore, not necessarily universal, given the multi-timescale and initial- 
value nature of the problem. In fact, some RDT studies even go so far as to predict 
an increase with M ,  of the kinetic energy amplification for turbulence under rapid 
(but finite) compression; these studies, by Debihve, Gouin & Gaviglio (1982) and 
Jacquin et al. (1993), are discussed in the following subsection, where the general 
RDT equations are presented and the reasons for the apparent growth rate versus 
Mt discrepancy are given. This analysis is based on an extended Craya-Herring 
decomposition (Cambon 1982, 1990; Cambon, Teissare & Jeandel 1985), which is 
shown to facilitate a separate investigation of the solenoidal and dilatational histories 
and provides a useful comparison to other approaches (e.g. Blaisdell et al. 1991). 

Some of the earlier RDT studies have apparently over-estimated the role of the 
pressure-dilatation term, attempting to force an increased damping due to compress- 
ibility of the kinetic energy growth rate. We hope to clarify the situation here by 
separately considering various terms in one-point closure equations and thus use 
RDT as a tool for improving a model’s representation of those terms. While the RDT 
is not a model in-and-of itself, by improving the accuracy of crucial terms, we expect 
that it will in turn also improve the overall accuracy of the model. 

(3) 
- 
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2.2. Definitions and background 

To investigate the influence of the mean flow upon the turbulence, it is convenient to 
use a coordinate system xi that deforms with the mean deformation. We accordingly 
define the Lagrangian displacement tensor Fij (Eringen 1967) via 

ax. ax. 
at ax, dxi = L d t  + L d X j  = Uidt + FijdXj, (4) 

where xi(X, t )  is the position at time t of a fluid particle moving with the mean flow, 
which has the position X i  at the initial time t = 0. Representing the substantial time 
derivative by an overdot, one has 

where 

is the substantial derivative; where appropriate (for longer expressions) we shall also 
use the symbol 9( ) / %  to denote the substantial derivative. Unless stated otherwise, 
the dependent variables are assumed to be decomposed into Reynolds-averaged and 
fluctuating components, as Ui + ui, where a capital letter (and later an overbar) is 
used to denote Reynolds- (ensemble) averaged quantities, and lowercase (and primed, 
when necessary for clarity) variables denote fluctuating quantities. Note that F is a 
function of the stationary coordinate X, the time t ,  and is parameterized by the time 
(in units of t )  at which the tensor is orthonormal (hence the third argument in (54). 
For flows under mean compression, the determinant of F has special significance 
since it is equal to the volumetric ratio J .  

When the mean velocity field is irrotational, the analyses proposed (over a hundred 
years ago!) by Cauchy, Weber, or Kelvin for the total (mean plus fluctuating) vorticity 
can be used to give solutions for the fluctuating vorticity (ai = Cijkukj )  and velocity 
fields: 

(6) 

(7) 

1 
J Oi(X, t )  = -Fij(x,  t ,  O)Oj(X,O), 

Uj(X, t )  = F];l(X, t, O)Uj(X, 0) + $,i. 
These solutions, which ultimately derive from the linearized Euler equations, remain 
valid for inhomogeneous flows (recall the spatial dependence o f f )  and compressible 
flows - provided that the baroclinic torque (in (6)) and entropy fluctuations (in (7)) are 
neglected; see Goldstein (1978). Equation (6) is the classic solution of the linearized 
Helmholtz equation when the mean vorticity-fluctuating velocity term is zero (that 
is, for an irrotational mean flow). When this term is not zero, simple solutions in 
physical space are not possible. Equation (7) (also valid only for irrotational mean 
flows), an expression that has been extensively used by Goldstein (1978), contains the 
scalar potential 4, which is directly connected to the fluctuating pressure (4 = p / p )  
and can be calculated once certain assumptions are made (e.g. that the fluctuating 
velocity field is solenoidal or that the dilatational field is nearly acoustic). The term 4 
is not the scalar potential arising from the Helmholtz decomposition (which we will 
denote cp in the following) because the ‘F;l’ term in (7) contains contributions from 
both the solenoidal and dilatational velocity field. 

To put the present study in context we first note that Debikve et al.’s (1982) RDT 
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solution of the Lagrangian transport equation for the Reynolds stress tensor for the 
case of shock wave-turbulence interaction has the form 

uiuj(t+) = F;’(t+, t-)UmUn(t-)F;’(t+, t - ) ,  (8) 
where t- and t+ refer to positions upstream and downstream of the shock, respectively, 
following a mean streamline through the shock. The shock is considered as a pure 
discontinuity of the mean streamwise velocity. In other words, it is an external 
streamwise compression of infinite rate, and the associated tensor f does not depend 
on the history of the velocity gradient, but is completely characterized by the mean 
density jump or mean volumetric ratio J = Det(F), with Fij = J6i16jl through the 
shock. The ratio J is linked to the upstream Mach number Mo via 

where y is the ratio of specific heats, and use has been made of the classic Rankine- 
Hugoniot relations for the mean (frozen) field. A comparison of equations (7) and 
(8) shows that this approach ignores the effect of pressure (which is mediated by 
4 in (7)); the response of the pressure fluctuations with afinite characteristic time 
even for the so-called ‘rapid’ term is neglected compared to an infinite compression 
rate. Another idealization in the Debieve et al. analysis, which was also pointed 
out by Lee, Moin & Lele (1992), is that the distortion (curvature and unsteadiness) 
of the shock surface by the impinging turbulent structure is ignored. This issue, 
previously addressed by Ribner (1953) and Hayes (1957), is not considered in the 
present paper. We investigate instead the role of the pressure field in a simpler 
homogeneous framework by explicitly defining and formalizing the range of validity 
of the ‘pressure released’ regime that is implicit in the Debieve analysis. This paper 
has much in common with the recent homogeneous analysis of Jacquin et al. (1992), 
in which the pressure-released limit was first explicitly advocated. 

Equation (7) shows that an irrotational deformation of a purely solenoidal velocity 
field is given by 

where to maintain uLi = 0 we have, 
U i ( X , t )  = U i ( X ,  t )  = (F~l(x,t,o)~j(x,o))s, (10) 

(where the s and d superscripts (and later subscripts) are understood to respectively 
refer to the solenoidal and dilatational contributions). The latter equation for the 
potential 4 is easily rewritten as a Poisson equation, 

which is a time-integral form of the classic Poisson equation for the fluctuating 
pressure. For the solenoidal case, the pressure ‘kills off the dilatational contribution, 
resulting in the lower limit of the kinetic energy growth rate caused by the mean 
compression. Conversely, in the pressure-released regime, the uf contribution in (1 1) is 
no longer ‘removed’ by the pressure, producing an extra contribution to the solenoidal 
energy, which is unaffected by the dilatation field and again grows in accordance with 
(10); in other words, the compressibility leads to an increase in the kinetic energy 
growth rate. 

From this point hence, the RDT analysis will be continued under the assumption 
of flow homogeneity and use made of a spectral formalism; the Fourier wave-space 
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proves to be invaluable for obtaining tractable RDT solutions. Beginning with (6), 
we shall use the Fourier space to extract the solenoidal velocity from the vorticity, as 
was done by Batchelor & Proudman (1954). Instead of solving a Poisson equation 
in physical space, we use a simple geometric wave-space projection to invoke the 
Helmholtz decomposition. 

C. Cambon, G. N. Coleman and N. N. Mansour 

2.3. The meanjow 
Before turning to the turbulent fields, however, we determine the types of mean defor- 
mations that are admitted by this analysis - i.e. those that preserve the homogeneity 
of the flow. In incompressible turbulence, the constraint of maintaining homogeneous 
statistical properties leads to two conditions: the mean velocity gradient UCj must be 
uniform in space, and the mean flow must be a particular solution of the Navier- 
Stokes equations. The last condition amounts to an irrotational mean acceleration, 
so that 

v x r = o ,  
or that 

0, + ui,lul,j 

is symmetric, where 

Compressibility introduces a new condition. The linearization of the momentum 
equation displays two acceleration terms. The first one is the product of mean density 
and the fluctuating acceleration and leads to the same constraint mentioned above. 
The second term is the product of density fluctuation p' by the mean acceleration 
r and is typically non-homogeneous (as can be seen by the spatial dependence in 
(14)). This term can be removed, and homogeneity preserved, by neglecting the 
density fluctuation with respect to the mean density. Such an approximation (which 
is consistent with 'compressed' turbulence at low Mach number) will be not used in 
this paper. Instead, we admit only mean flows without convective acceleration. From 
(5) and (14) we see that this requires 

or 

Equation (15) is valid for an arbitrary constant (not necessarily symmetric) matrix A 
for arbitrary times, provided that the determinant of F, J, remains positive. Special 
cases of (15) have been given previously, for example, for pure strain and shear 
(Blaisdell et al. 1991). A good approximation for the mean pressure P as a function 
of J can be derived from the isentropic relations. (While the isentropic relations 
are not strictly valid when Mt is non-zero, DNS of finite-M, turbulence under mean 
compression have shown that the deviation from the isentropic prediction is relatively 
small : for example, in the rapid axial compression case with initial Mt = 0.29 discussed 
below, the mean pressure is within 6% of the isentropic value after a five-fold density 
increase.) 
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2.4. The jluctuating Jzow 

The linearized Euler equations (with p’Ti = 0) in the deforming coordinate system 
are 

(16) 

with ii = p ( t )  = p(O)/J( t )  (recall that the dot superscript denotes a substantial 
derivative). The linearized equations for the fluctuating pressure p and entropy s read 
(see DZ) 

t. + u. .u. = -- P,i 

F 1 1J I 

(S) = -ui,i, s = 0, 

where P = pRT. An investigation of the coupling between solenoidal and dilatational 
contributions to the fluctuating velocity field is conveniently done by transforming the 
variables in (the deformed coordinate) x into (three-dimensional) Fourier space, which 
we indicate either by a caret symbol or the notation ‘g( )’. The classic Helmholtz 
decomposition is given first in physical and then in spectral space as follows: 

(1 8) o i ( X  t )  = eijlWl,j + q,i, 

k k - ,  q(k,  t )  = ( 6, - - 2) Ej + L o j ,  k2 
h 

for any vector field u. The two terms on the right-hand sides correspond to us and d, 
which are defined in physical space by the vector y i  and the scalar potential cp. The 
corresponding spectral space decomposition into 3 and ;;d is given by the projection 
operators in (19), which separate the (single-component) dilatational contribution 
parallel to the wavevector k from the (two-component) solenoidal contribution in the 
plane normal to k. Equations (16) and (17) are easily Fourier-transformed; only the 
advection term requires particular caution : 

so 

The first and the last terms in the right-hand side of the latter equation are collectively 
treated as a derivative along characteristic curves, which plays the same role as the 
mean trajectories in physical space. This derivative will, therefore, also be represented 
by an overdot so that 

ki + Uj,ikj = 0, with solution ki = F];’(t, O)Kj. (20) 
The analogy with physical space is complete, since 

3. 1 - U . . x .  ‘31 J = 0, with solution xi  = Fij(t,O)Xj. (21) 
The initial k value, K, plays the same role in wave space as the Lagrangian coordinate 
X does in physical space. Pure kinematic distortion by advection in physical and 
spectral space are linked by a wave conservation law 

exp(ikjxj) = exp(iKjXj), 

where i2 = -1. Accordingly, one has 
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and equation (1 6) becomes 
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(23) h F ui - U1,& + Ui,& = -iki=. 
P 

In the latter equation, the projection operators in (19) can be used to separate 
solenoidal and dilatational contributions. We prefer to use a slightly different method 
by specifying a special frame for the solenoidal mode, according to an extended 
Craya-Herring decomposition (Cambon 1990). An orthonormal frame of reference 
(&), e(2), e(3)) attached to the wavevector is used with the last vector being parallel to 
k (ey) = ki/k,  where k is the wavevector modulus). In this local frame, the Fourier 
transform of the velocity fluctuation reads 

@(k,  t )  = @(')(k, t)el"(k) + @"(k, t)ey)(k) + @'3'(k, t)e!3)(k). (24) 
The two first terms give exactly 4, and the latter gives q, with a minimal number of 
components and conservation of all the tensorial properties (invariants) due to the 
orthonormal properties of the local frame. Classic descriptions in terms of vorticity 
and divergence are easily recovered as 

&ji = ik($(l)e?) - @(2)ef')) (254 

d G. .  1, )  = ik3(3)- (25b) 
and 

In order to remove the uncertainty regarding the azimuthal position of the solenoidal 
coordinates with respect to d3), the (e('),e('))-plane is defined by choosing a fixed 
spherical-coordinate polar axis n, after Herring (1974). (Craya 1958 implicitly used 
ni = ai3 and addressed only covariance matrices of the velocity field and thus limited 
the generality of his approach.) We set 

Striking simplifications can be made by choosing the polar axis according to the 
symmetries of the mean flow (if any) or the statistical properties of the fluctuating 
field, retaining the full generality of the method. The equations in the local frame 
can be made nearly independent of the choice of n by using the 'helical modes' 
(ei2) - ier), ei2' + icy') (which are also eigenmodes of the plane rotation matrix around 
k and of the 'curl' operator) as the basis set (see Greenspan 1968; Cambon & Jacquin 
1989; Waleffe 1993). Substituting (24) into (23) leads to the linear system of equations 
for the three components of Gi in the local Craya-Herring frame, with 

(27) 

(28) $3) - Ul,l@(3) + rn33i$3) + rn3,ijjb) + ik= = 0. 

Greek indices (indicating solenoidal space) take only the value 1 or 2, whereas the 
Latin indices range from 1 to 3 (and the Einstein summation convention is assumed). 
Calculation of the matrix mij is straightforward; remembering to account for the time 
derivative of e(') with fixed K, using (20) and (26), the elements are 

- Ul,@ -(a) + rn,&P) + rn,3@(3)  = 0, 

i; 
P 

ma8 = $1 Ui,jey) - @)eifl) = e!") Ui,je:!?) - c a a 3 ~ E ,  

mE3 = ej")Uijef)  - $4ej3) = er)(Ui,j  - u. J.1 .)e(3' j , 

(294 

(29b) 
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m36! = ef)Ukjey)  - ei . (3) e, (4 - - 2e!3) I u. .e(.a) , 
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(294 

m33 = e?) Ui,jey'. (294  
The rotation term RE is ey)Uj,jey) if the polar axis is chosen as one of the eigenvectors 
of the mean gradient matrix; its general expression is available in Cambon et al. (1985). 
The last equation relevant to our study is that which governs the pressure: 

Without mean distortion, (28) and (30) correspond to a pure acoustic regime, where 
energy is exchanged between dilatational velocity and pressure at a frequency ak. (The 
sonic speed a is easily reintroduced using the isentropic relation u2 = yRT = yp/p.)  
On the other hand, the (exact) balance between the two last terms in (28) is the 
equivalent in physical space of the Poisson equation for p in the pure solenoidal 
flow. The solenoidal contribution to velocity is seen to be completely uncoupled from 
the dilatational field if mor3 is zero. This is valid for any irrotational compressing 
mean flow, but not for  pure shear, as has been stressed by Blaisdell et al. (1991). 
(The shear case is discussed further in $5). Finally, we note that the coupling of the 
solenoidal and dilatational fields is mediated by m3a. This term is zero for spherical 
compression but must be considered for any anisotropic straining process (except for 
very specific wavevectors given by the particular deformation). An investigation of 
the timescales in (28) introduces the parameter &(k) 3 (zD)-'/ak, for which Am is an 
averaged approximation in physical space. For very low values of this parameter, the 
incompressible limit is recovered, the dilatational mode ( P ( ~ )  tends to zero, and the 
sonic speed u approaches infinity; both kF/p (which tends to the solenoidal solution 
of the Poisson equation) and its time derivative (which from (30) is observed to 
be proportional to ~ ~ 4 ~ ) )  tend to finite non-zero values without inconsistency. At 
moderate %(k), a pseudo-acoustic regime is recovered, which deviates from the pure 
incompressible ( u ~ , ~  = 0, p = p s )  case since the time variation of the m3. term in (28) 
can be neglected and a WKB approximation can be used to predict the oscillating 
behaviour of 2 (Sabel'nikov 1975 and DZ). (This oscillating behaviour will be revisited 
in $5.) For large values of &(k), the pressure term in (28) can be neglected compared 
to the other terms, and the 'pressure released' regime is obtained. 

An approach which allows the classification of other relevant limits is available by 
introducing integrating factors into (28) and (30) so that 

satisfy the simpler equations 

+ a2z = d z s ,  
9 ( i / k 2 )  

9 t  (33) 
where zs = J-'jjs/iia2 = i (J - ' /k~~)m,G(~) .  The left-hand sides of both (32) and (33) 
are linked only to the dynamics of the solenoidal field and thus decoupled from the 
dilatational and pressure terms for irrotational mean deformations. 

We are now in a position to distinguish the different regimes implied by equations 
(32) and (33): 

22 FLM 2 5 7  
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(i) The incompressible limit, with a2 -+ 00, which corresponds to a vanishing value 
of all the time-derivatives in both equations; hence, is and y + 0, and z = zs 
(i.e. p = ps)  and y = 0 are consistent limits in this case. 

(ii) The acoustic regime, recovered when k 2 y  > iis. By invoking (Am)* Q 1 DZ 
satisfied this condition during their investigation of the acoustic mode. 

(iii) A 'pseudo-solenoidal' regime - where the pressure-dilatation correlation is 
given by the solenoidal pressure variance - which corresponds to k2y = iis in (32) and 
z = zs in (33); these equalities hold only if the time-derivative of the solenoidal term 
(right-hand side of (32)) is much larger than the time-derivative of the dilatational 
term (first term on the left-hand side of (32)). This regime may be considered to be a 
subset of the Am < 1 case. 

(iv) The pressure-released limit, corresponding to k2y < iis in (32), which leads to 
the condition 

(with e a lengthscale of the energy-containing turbulence) required for the pressure- 
released regime to be valid. We mention in passing that if one assumes that the 
ratio ,I of the dilatational to solenoidal kinetic energy is proportional to M;, the 
above inequality suggests that an alternative to Am as the parameter that defines 
the pressure-released regime is the quantity AmMLS = rM:.  In spite of this, the 
DNS results presented below indicate that the pressure-released limit seems to be 
adequately parameterized by Am alone. 

For the solenoidal field certain results can be obtained analytically, as is demon- 
strated below for the case of axial compression, since the solenoidal part of the 
linear transfer function (see Cambon et al. 1992) depends only on the orientation of 
the wave vector, and not on the modulus; integrations over wave space needed to 
derive the one-point velocity correlations can thus be separated into the product of 
two one-dimensional integrals, one of which defines (independently of initial spectra 
shape) the initial kinetic energy. Evaluation of the non-solenoidal correlations is not 
as straightforward since the components of the linear transfer matrix that involve the 
dilatation depend on both the direction e?) = k i / k  of k (as for the solenoidal case) and 
on its modulus. Accordingly, amplification coefficients in general require numerical 
integration. This complication is a symptom of the wavenumber dependence of the 
sonic timescale in spectral space (a(0)K)-' ,  symbolically shown in figure l(a) ; since 
the deformation scale D-' is the same for all wavenumbers, above a critical value K', 
the sonic is the shorter of the two timescales. For a given energy spectrum with peak 
at KO so that Am is characterized by &(KO), the rapid distortion behaviour depends 
on K/Ko .  The largest structures (K  < KO) will, therefore, naturally tend toward 
the pressure-released extreme and the smallest (K  > KO) toward the solenoidal limit. 
When KO falls well below K',  the entire flow is within the pressure-released regime, 
and Am s 1 ;  when KO + K*,  the Am -+ 0 limit is valid (see figure lb).  

In the next section, the analysis is applied to the special case of axial compression, 
and DNS results are used to verify the relevance of Am as a critical parameter. 

I I 

3. RDT and DNS of axially compressed flow 
Both the RDT and DNS impose upon isotropic compressible turbulence an axial 

deformation that satisfies the homogeneity condition (15) so that the single non-zero 
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Pressure-released flow 

K K 
RGURE 1. Solenoidal and pressure-release regimes : (a) timescales; ( b )  energy spectra. 

FIGURE 2. Contours of turbulent Mach number (a)  before and (b)  after axial compression (Case C ) .  

mean velocity gradient component is 

For Do = D(0)  < 0, this straining can be maintained for a finite time after which the 
flow volume becomes zero. Here we consider mean density ratios (equal to J-’) that 
vary from 1 to 5; see figure 2. In the next subsection we specify the RDT correlations 
relevant to one-point modelling of the axial compression. 

3.1. Rapid distortion analysis for axial compression 
For the case of axial compression, the Craya-Herring-Cambon coordinates given in 
92 reduce to er’ = cos 8 and ey’ = -sin 8, where 0 is the angle between k and n, and 
the polar axis is chosen along the compression direction so that el‘’ = 0 (see Cambon 
& Jacquin 1989 for other axisymmetric RDT applications). The RDT solutions for 
the solenoidal field are then 

(35) 
K 
k @‘)(k, t )  = J@(’)(K, 0) and qt2)(k, t )  = -@(’)(K, 0), 

22-2 
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with k,  = KIJ-', k2 = K2, k3 = K3, cos0 = kl/k = CJ-l/(l + C2C2)4, k2 = 1 + C2C2, 
C2 = J-' - 1 and 5 = K1/K. The double correlations are calculated using 

C. Cambon, G. N. Coleman and N. N. Mansour 

-~ 
(36) 

Assuming isotropic initial data, both the solenoidal and pressure-released analytical 
RDT predictions can be obtained by integrating either over 5 or directly in physical 
space, with the results being unaffected by the initial spectral shape. The axial 
compression correlations are listed below, using as super- or subscripts s and p to 
denote the solenoidal and pressure-released limiting cases, respectively. 

/yh ui ui = $Ci)*i$O and = -$(2) sin 6 + $(3) cos 6. 

Turbulent kinetic energy: 

Compression-direction Reynold stress component : 

Compression-direction solenoidal-dilatational cross-correlation : 
- 
u?u;'(t) = C,(J) = 0, 

Structure dimensionality tensor, Dij (Reynolds 
Cambon 1990) : 

1992; see also Blaisdell et al. 1991 and 

where 

and 

with k = k(t); the second equalities are valid only for the homogeneous case. The 
vector yi and scalar cp are the result of the Helmholtz decomposition (18), and 
d = Es + dd is the three-dimensional kinetic energy spectrum. 

Compression-direction component of the pressure-strain rate correlation, n, = 

P(ui,j + uj, i ) /P:  

The pressure-dilatation term 17 is identically zero for both limits. 
In terms of the inverse compression ratio J with C2 = J-2 - 1, we have for the 

J < 1 case 
2 + Jh2 

, A,=- - -  3 '  

J-2 
Bp = 3, B = -  J-' (1  -+-- Ci2- 1 tan-'C 

2c2 2 C 
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tan-’ C C2 + 3 + (C2 - 3)5-’--- 

The solenoidal amplification functions turn out to be nearly linear in P ,  whereas 
the pressure-released expressions are nearly parabolic. The quantities A, and B,, 
previously derived by Ribner(1953), and the new expressions D, and E, are almost 
the same as those found for incompressible axisymmetric strain (of arbitrary history), 
with, for example, the Reynolds stress tensor qj = u;u; = J-$RG(J),  where R’ is the 
RDT solution for the trace-free part of the mean deformation. Functions A, and 
Bp are obtained by simply ignoring the pressure terms during the integration of the 
equations for the one-point correlations in the rapid axial compression limit, which 
are 

-D&I + a, (43) ; 4 2  = 

(44) 
where Rij = uiuj, and Il = Ilii/2 = 

For moderate compressibility, we find from the DNS results that the role of n,,, 
which reduces the anisotropy (bll = Rll/qZ - f )  in (43) and, therefore, indirectly 
reduces the production term in the kinetic energy equation, is more important than 
the direct role of IZ. Evidence for this will be presented in the next section, where we 
use DNS results to test a few aspects of the rapid distortion analysis. 

RII = -2DR11 + 17x1, 

3.2. Comparison to DNS of rapid axial compression 
The DNS results were obtained using a pseudo-spectral method to solve the com- 
pressible Navier-Stokes equations over a homogeneous domain in coordinates that 
move with the mean deformation (Rogallo 1981; Blaisdell et al. 1991; Coleman & 
Mansour 1991). As mentioned previously, the mean density ratio, J-’ = p(t)/p(O), 
varies from 1 to 5 during the compression. The runs use for initial conditions com- 
pressible isotropic turbulence at various turbulent Mach numbers that have evolved 
from velocity fields, with finite dilatational components, that are in near acoustic 
equilibrium (Sarkar et al. 1989); these initial fields are generated by running the 
code with no mean straining until they develop realistic triple-velocity correlations 
and dilatational energy for the given M,.  (Note that Blaisdell et al. have found that 
compressible isotropic turbulence strongly depends upon all the initial conditions for 
the dilatational field, not just M,, which implies that had we begun the precompu- 
tation with, for example, a purely solenoidal field, the levels of dilatational energy 
in the developed flow might be significantly different than those found here.) The 
initial turbulent Mach number for the runs varies from 0.025 to 0.44, the initial non- 
dimensional compression speed r = IDlq2/t- ranges from 47 to 800 (and (Dl/oioii 
from 2 to 88), and the initial values of Am = M,(D(q2/e fall between 1.2 and 178 
(while Am* 5 M,JDI/E& initially lies between 0.26 and 8). A ratio of constant 
specific heats y = 5 and temperature-dependent viscosity p = To.’* are assumed, as is 
a constant Prandtl number of 0.7. All the runs use 963 grid points, and were generated 
by a version of the code developed by Blaisdell et al. (1991) that has been modified 
to run on the NAS Intel Hypercube/i860 at NASA Ames Research Center. 
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KWP(0) 
FIGURE 3. Turbulent kinetic energy histories: -, lower, ( 3 7 4 ;  -, upper, (37b); . . . . . , DNS with 
initial Am ranging from 0.3 (lower) to from 3.G8.0 (upper); - - - -, DNS results: lower, Case A 
( M t ,  Am)t=o = (0.025,5); upper, Case B (0.1 1,87); middle, Case C (0.29,29). 

Run (MJO - ( W / ~ O  (q4/% (Am)o (Am*), ( q M 0  (prmS/i% 
A 0.025 194 358 5 0.3 0.06 0.01 0.005 
B 0.11 800 184 87 6.9 0.18 0.05 0.04 
C 0.29 100 500 29 1.3 0.09 0.10 0.08 

TABLE 1. DNS initial parameters. 

Results for the total (solenoidal and dilatational) turbulent kinetic energy will first 
be presented. In figure 3, the DNS histories for puiui/p are plotted against the 
mean density ratio J-’ = p(t)/p(O). (Because it is convenient in the code to solve 
for momentum rather than velocity, all of the DNS results presented approximate 
velocity correlations by using density-weighted averages. We find for our purposes 
that the uncertainty introduced by comparing the DNS Favre averages to the RDT 
Reynolds averages is unimportant.) These curves strongly support the validity of 
the RDT analysis presented above, in that all the DNS results lie between the lower 
solenoidal (‘As’) and upper pressure-released (‘A,,’) RDT limits - and that the rate of 
energy amplification scales almost monotonically with the initial value of Am, which 
varies from 1.2 for the lower (dotted) curve to from 44 to 178 for the upper (dotted) 
curves (and with Am*, which ranges from 0.3 to from 3 to 8). Three runs will be 
examined further, those represented by the dashed curves in figure 3. Cases A, B, 
and C have initial Mt equal to 0.025, 0.1 1, and 0.29, respectively, but the compression 
rates are such that the corresponding order for Am is 5, 87, and 29. The other initial 
parameters are given in table 1. At the end of the compression the (M,,Am) values 
for A, B, and C are respectively (0.03,18), (0.2,193), and (0.4,93). (Note that because 
the code uses a grid system that deforms with the mean strain (Blaisdell et al. 1991) 
the turbulent fields are resolved throughout the compression, even after the 5-to-1 
volume decrease.) 

Figure 4 confirms that ( 3 7 4  is an excellent approximation for q,2 for the three 
cases considered and that the solenoidal field is, in fact, unaffected by the dilatational 
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P(tYP(0) 
FIGURE 4. Solenoidal turbulent kinetic energy histories: -, Case A; - - - -, Case B; 

..-.., Case C; -1 - ,  (374 .  

P(t)@(O) 
FIGURE 5. Solenoidal and dilatational turbulent kinetic energy histories : 0, solenoidal; 

0, dilatational; -, Case A; - - - - , Case B; . . . . . , Case C. 

field, as predicted by the RDT. Both contributions to the kinetic energy are shown 
in figure 5. We see that the dilatational energy is most important at the end of the 
compression, when the pressure-released regime dominates. The initial values of the 
dilatational-to-solenoidal energy ratio 3Lo for the various runs is also apparent. 

These results suggest the following model for the Mach number dependence of the 
kinetic energy behaviour during a rapid axial compression : 

4 3 )  = AS(J)d(O)Y (454 

(45@ &) = AP(J)d(O) + (A,+(J) - A W )  4,2(0), 
where the 'interpolation functions' A: and A,' are assumed to vary monotonically with 
Am, increasing from zero to maxima of Ap and A,, respectively. Similar agreement with - 
DNS data is found for the other correlations given in (42). The results for and u; '4 
are presented on figure 6, where the DNS and RDT histories closely correspond. The 
slight overamplification of the DNS result compared to the analytical u;u"1/q,2 = &/A,  
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HWij(0) 
FIGURE 6. Histories of the anisotropy of solenoidal and dilatational turbulent kinetic energy: 
0, solenoidal; 0, dilatational; -, Case A; - - - -, Case B; . * . . . , Case C; -. -, ( 3 7 4  ( 3 8 ~ ) ;  
- - -, (37a, b), (38a, b), using Lo = 0.22 from Case B. 
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P(t)/ij(O) 

FIGURE 7. Structure tensor histories: 0, solenoidal; 0, dilatational; -, Case A; - - - - , Case B; 
. . . . ., Case C; -.-, ( 3 7 4  (40~); - - -, (37a,b), (38a,b), using & = 0.22 from Case B. 

ratio becomes more pronounced with increasing Am. For the dilatational curves in 
figure 6, ufuf/q,2, we find the expected trend with Am, since they are closest to the 
analytical pressure-released expression (the ‘chain-dash’ curve) when Am is largest. 
An analogue to (45) is therefore proposed as a model for the dilatational Reynolds 
stress: 

__ 

where the initial dilatational to solenoidal kinetic energy ratio, Ao, in practice could 
perhaps be neglected. The curves in figure 6 suggest that the ratio (B,f - B, t ) / (B ,  - B,) 
is smaller than the same ratio of ‘A’ functions. 

Another anisotropy measure is presented in figure 7, where the structure tensors 
are shown. Recall that Of, = ui’uf. The fact that 0, = B, in (40a) confirms that this 

- 
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1.5 . I . ,  , I . ,  . T .  I .  I .  

FIGURE 8. Histories of the compression-direction component of the dilatational-solenoidal 
Reynolds stress correlation: -, Case A; - - - -, Case 3; . . . * , Case C; --a-, (38a), (39b). 

equality is a good approximation for axisymmetric strain, as suggested by studies 
of non-isotropic initial data under rapid rotation (Reynolds 1992; Mansour, Shih & 
Reynolds 1991). In axisymmetric turbulence, D11/q2 can be interpreted as an angular 
coefficient cos2 M, which reveals the conical structure around the symmetry axis of the 
spectral region that contains energy. For example, a value of 5 for this coefficient 
suggests no angular dependence (directional isotropy), whereas a value between 0 
and f suggests a relative concentration of spectral energy in the plane normal to the 
symmetry axis. Unfortunately, the situation is more complex in the presence of a. mean 
distortion, which causes a variation in direction of the time-dependent wavevector; 
in the pressure-released case, the angular distribution of spectral energy is unchanged 
with respect to (isotropic) initial data, but the wavevector tends to be aligned with 
the symmetry (compression) direction (see ( ~ O C ,  d)) so that cos2 M increases and tends 
to 1. On the other hand, in the pure solenoidal limit, the relative concentration 
of spectral energy in the plane normal to the compression direction opposes the 
tendency induced by the wavevector motion so that a slower (as compared to the 
pressure-released case), but still positive, net increase of the anisotropy is obtained, 
The solenoidal ratio of D;,/q,Z given by the DNS is found to be slightly lower than 
the RDT analytical prediction. 

The cross-correlation u;uf/u;u; is plotted in figure 8 and compared to the RDT 
expression C,(J)/B,(J)  from (38a) and (39b). The results suggest that for modelling 
purposes it might be advantageous to use an effective ‘saturated’ volumetric ratio 
J+ in place of J and define C:, an interpolating function for the cross-correlation, 
according to 

- - 

and use the model - *.I: = Cp(J+)q,2(0). 

(474 

(474 
The parameter J +  would tend toward the actual J in the pressure-released limit and 
approach unity in the solenoidal limit. The role of pressure will be discussed further 
in $4; for now we observe in figures 9 and 10 the dramatic increase of both pressure 
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1 2 3 4 5 
HtYP(0) 

FIGURE 9. Pressure variance histories: -, Case A; - - - - , Case B; * . . . . , Case C. 

variance and pressure-dilatation terms caused by the compression. The amplification 
increases with the initial turbulent Mach number, which at first seems to conflict 
with the idea of a pressure-released limit. The paradox disappears, however, if the 
pressure4ilatation term is no longer non-dimensionalized by initial values (as is done 
in figures 9 and lo), but rather scaled by a term proportional to the kinetic energy 
production. DNS results for n / D q 2  are presented on figure 11. The magnitude of 
this term is found to decrease with increasing Am for the three cases considered. This 
implies a non-monotonic variation with Am for this term (since it is identically zero 
in the solenoidal limit) with a maximum reached at low compressibility. It can be 
noticed that increasing values of 17/Dq2 are found at large J-’ for the intermediate 
Am case (C), which we expect cannot be explained by RDT. This illustrates that the 
requirements for a compression to be rapid enough for RDT to be valid are more 
difficult to meet when the flow is intrinsically compressible, a fact also stressed by 
Zeman & Coleman (1993). The term nll/Dq2 linked to the compression-direction 
component of the pressure-strain rate correlation is shown in figure 12. The solenoidal 
RDT expression, E , ( J ) / A , ( J ) ,  from (37a) and (41a) is plotted and is found to give 
an upper limit to the DNS curves. These results suggest a monotonic decrease of 
IIll/Dq2 with increasing Am. Moreover, comparisons of the order of magnitude for 
both terms in figures 11 and 12 (noting the different scales of the two plots) show 
that the compression-direction component of the pressure-strain rate is dominant 
compared to its trace (the pressure-dilatation term) in all cases. This confirms that 
the reduction of amplification of turbulent kinetic energy with respect to the pressure- 
released case (where only the ‘production’ effects are present) is mainly due to n,,, 
through reduction of anisotropy, as in the pure solenoidal limit. 

4. Towards a pressure-strain rate model 

(43) and (44), using (45) and (46) to model q2 and iiX. The result is 
Equations for 1111 and n valid for a rapid mean compression can be derived from 
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RGURE 10. Pressurdilatation correlation histories: symbols as figure 9. 

and 

To obtain the above, the relations 

d d 
J-'-(J'BS) = E , ;  -(J2B,) = 0; ;As + DB, = 0; ;Ap + DB, = 0, (50) dt  d t  

have also been used. 
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12. Histories of correlation of pressure and compression-direction velocity 

--,CaseA;----,CaseB;-....,CaseC;--.--, (37a)and (41a). 
gradient: 

4.1. Proposals for second-order modelling 
Two simple ideas for constructing the ‘interpolation’ functions in (48) and (49) 
(denoted by a superscript ‘+’) are proposed : 

(i) Using two functions of Am, passing monotonically from from 0 to 1 so that 
A+ P - A: = fl(A, - A,) and BT - B,f = f2(Bp - B,); if the time-variation of the 
interpolation functions is neglected, this leads to the model 

n11 = ( 1  - f 2 ) 7  (514 

(5 1 b) n = c f z  - f l ) W ,  - BJqf(0). 
Note that f 2  > f, is consistent with the sign of 11 found in the DNS results and with 
the interpretation of dilatational energy histories in figure 5. 

(ii) Using a ‘saturated’ volumetric ratio J+ instead of the actual J in the evaluation 
of the interpolation functions, so that A+(J) = A(J+).  The equation for J+ would be 

a 
G j +  = Ui,jJ+ - (cJ+)-(J+ - 1), ( 5 1 4  

where CJ+ is a modelling constant. The sonic timescale-damping term would allow 
J+ to saturate close to unity as the flow regime approaches the solenoidal limit. 

4.2. Testing a second-order model 
Analysis of the three DNS cases shows that they are in the regime where the 
production and the rapid redistribution terms are dominant. The contribution of 
the pressure-dilatation is about 10% of the production in the worst case (a value of 
15% is found in the DNS data presented by DZ). This leads us in our attempt to 
model the DNS results to adopt the first proposal of the previous subsection, and 
consider a linear (in bij = w/q2 - 6,/3) model for the solenoidal rapid part (see 
Launder, Reece & Rodi 1975) of the redistribution term, taking 1 - f 2  in (51a) to be 
an exponential function of Am. The mean and Reynolds-stress equations then reduce 
to 
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FIGURE 13. Reynolds stress history, compression-direction component : - , Case A; 

- - - -, Case B; . . . . . , Case C ;  0, (52); no symbols, DNS. 

where Am = M , ( S i j S j i ) ~ q 2 / e  and we have set a = 2.523 (to be consistent with the 
model of Launder et al. 1975), and CA, = 40. The quantity sZij = (Ui,j - Uj, i ) /2  is the 
mean rotation tensor. 

The development of the axial component of the Reynolds stress, R, , ,  as predicted 
by the above model for the three cases considered is shown in figure 13. We find 
that this simple model, where the effects of the redistributive term diminish when 
M ,  increases, compares well with the DNS data. The development of the turbulent 
kinetic energy (see figure 14) is also well reproduced, indicating that the effects of 
the pressure-dilatation are, in fact, weak compared to the production term. No 
attempt was made to optimize the constant CAm since the pressure-dilatation term 
was neglected. This term does play a role in the development of the flow, and Ch 
should be optimized in conjunction with a model for the pressure-dilatation term. 

5. Spherical compression and pure shear revisited 

In the presence of a mean spherical compression, with 
5.1. Isotropic spherical compression 

- DoJ-) ,  F.. = JiS.. and ki = KJ-4, (53) 

the coupling term m3d( in (27) and (28) has zero value. The evolution of the solenoidal 
kinetic energy is then easily found to be given by the amplification coefficient J - f  . For 
the dilatational field, (32) and (33) remain of interest now with their right-hand sides 
equal to zero (since i;" - m3E). Even in the absence of the right-hand sides, a WKB 
analysis of the equations would not in general be appropriate because the timescale 
variation of u2 and k2 is not necessarily small with respect to the expected frequency 

DO 
1 +Dot 

u.. = D&. D = ___ - ' J  ' I  7 ' I  ' I  
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RGURE 14. Turbulent kinetic energy history: symbols as figure 13. 
HMO)  

ak of the oscillating system (depending on the value of Am). G.A. Blaisdell (1992, 
private communication) has recently found a solution free of WKB assumptions, 
valid for arbitrary Am; the solution is restricted to values of y close to i, but a 
general analytical solution is possible (work in progress). If y = z, k2 and a2 have the 
same 3-3 time dependence, so simple solutions in terms of exp(+ia(O)k(t)t), where 
k(t) varies as in (53), can be obtained for y and z .  The history of 46” can then be 
derived from the initial (uncompressed) dilatational field. Assuming that acoustic 
equilibrium holds for the initial conditions, one can write 

which is the same variation found for the solenoidal energy, and corresponds to 
a pressure-released regime. (The acoustic equilibrium assumption is realistic but 
perhaps not necessary see Cambon et al. 1992.) We thus find that the spherically 
compressed flow lends support to the general approach advocated in this paper. 

5.2. Pure plane shear 
The case of shear flow is particularly interesting because all the coupling terms, most 
notably ma3 and mh, are present. The crucial parameter in the absence of compression 
(J  = 1) is the shear S = dUl/dx2. Under this deformation, (27) and (32) become 

with 

Here the polar axis is chosen to be in the gradient direction (ni = B i 2 ) .  The two 
solenoidal @(l) and @@) components are very close to the set (02,V2u2) used in linear 

Ui,j = S6i1612, kl = K1, k2 = K2 - KISt and k3 = K3.  
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stability analyses for decoupling, for example, the Orr-Sommerfeld equations for 
parallel flows (cf. Waleffe 1990). Even in the pure solenoidal case (where y = @(3) /k  = 
0), the present approach appears to be somewhat more tractable than are classic RDT 
approaches (Townsend 1976). Unlike for a purely irrotational mean deformation, the 
presence of the new coupling terms (mediated by m13 = -Sk2k3/kk13, m23 = Sk3/k13 
in the above equations) makes the solenoidal field no longer independent of the 
dilatational component. In addition, this coupling introduces the new term S2(k; /k2)y  
in (56). The pressure-released approximation amounts to neglecting a:k2y compared 
both to this new term and to the solenoidal right-hand side in (56). The Am+ 1 regime 
then implies that (in physical space), 

u1 = ul(0) - Stu2(0), 2.42 = ~ ( 0 )  and u3 = u3(0), 

and leads to quadratic amplification, with respect to St, of the kinetic energy (which 
is more rapid than the nearly linear amplification obtained by numerically integrating 
over k-space the solenoidal RDT solution for ;@(l)*@(l) + i@(2)*$(2)). Note that the 
inviscid solenoidal RDT solution for the vertical velocity component is given by 
9 ( V 2 u 2 ) / 9 t  = 0 in physical space (corresponding to (55)  with y = 0) so that a rapid 
decay of u2 is found. On the other hand, u2 is conserved in the pressure-released 
inviscid RDT limit. 

6. Recap and conclusions 
The objective of this analysis has been to develop a rapid distortion theory for 

homogeneous compressible turbulence at finite Mach number and then use that theory 
to explore some issues related to one-point compressible turbulence models. We have 
applied the analysis to the case of axial compression and found that DNS results 
confirm the RDT prediction of two distinct flow regimes, one for vanishingly small 
turbulent Mach number and the other for flows with negligible sonic and turbulent 
timescale variations compared to the mean distortion. The latter is referred to as the 
pressure-released regime (since the fluctuating pressure field can be neglected in the 
RDT for this limit) and is defined by large values of the product of Mt and the ratio of 
the turbulent to mean deformation timescales. For large values of this parameter, we 
find that the intrinsic compressibility of the turbulence is responsible for an increase 
in the growth rate of kinetic energy with increasing M,, an effect exactly opposite to 
that usually attributed to the compressibility. It would seem that the reduction in 
kinetic energy growth rate due to compressibility observed in previous compressible 
homogeneous DNS studies can be attributed to ‘slow’ terms with nonlinear and 
dissipative origin, such as the ‘extra’ dilatational dissipation associated by Zeman 
(1990) to ‘eddy shocklets’. 

For the axial compression, analytic expressions for the correlations associated with 
one-point closures for both the solenoidal and pressure-released limits have been 
given. These expressions have been used to propose methods of interpolating between 
the two limiting RDT cases in models for the pressure-strain rate correlation, nij, 
and thus account for finite turbulent Mach number effects. 

We are grateful to Professor G. Blaisdell for his contributions to this project. All the 
DNS results were obtained using the NAS facilities at NASA Ames Research Center. 
This work is a product of the 1992 Stanford/NASA-Ames Center for Turbulence 
Research summer program, and was partially supported by the Laboratoire de 
Mkcanique des Fluides et d’Acoustique, Ecole Centrale de Lyon. 
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